Systemic Induction of Photosynthesis via Illumination of the Shoot Apex Is Mediated Sequentially by Phytochrome B, Auxin and Hydrogen Peroxide in Tomato.

نویسندگان

  • Zhixin Guo
  • Feng Wang
  • Xun Xiang
  • Golam Jalal Ahammed
  • Mengmeng Wang
  • Eugen Onac
  • Jie Zhou
  • Xiaojian Xia
  • Kai Shi
  • Xueren Yin
  • Kunsong Chen
  • Jingquan Yu
  • Christine H Foyer
  • Yanhong Zhou
چکیده

Systemic signaling of upper leaves promotes the induction of photosynthesis in lower leaves, allowing more efficient use of light flecks. However, the nature of the systemic signals has remained elusive. Here, we show that preillumination of the tomato (Solanum lycopersicum) shoot apex alone can accelerate photosynthetic induction in distal leaves and that this process is light quality dependent, where red light promotes and far-red light delays photosynthetic induction. Grafting the wild-type rootstock with a phytochome B (phyB) mutant scion compromised light-induced photosynthetic induction as well as auxin biosynthesis in the shoot apex, auxin signaling, and RESPIRATORY BURST OXIDASE HOMOLOG1 (RBOH1)-dependent hydrogen peroxide (H2O2) production in the systemic leaves. Light-induced systemic H2O2 production in the leaves of the rootstock also was absent in plants grafted with an auxin-resistant diageotropica (dgt) mutant scion. Cyclic electron flow around photosystem I and associated ATP production were increased in the systemic leaves by exposure of the apex to red light. This enhancement was compromised in the systemic leaves of the wild-type rootstock with phyB and dgt mutant scions and also in RBOH1-RNA interference leaves with the wild type as scion. Silencing of ORANGE RIPENING, which encodes NAD(P)H dehydrogenase, compromised the systemic induction of photosynthesis. Taken together, these results demonstrate that exposure to red light triggers phyB-mediated auxin synthesis in the apex, leading to H2O2 generation in systemic leaves. Enhanced H2O2 levels in turn activate cyclic electron flow and ATP production, leading to a faster induction of photosynthetic CO2 assimilation in the systemic leaves, allowing plants better adaptation to the changing light environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Hydrogen Peroxide, Ascorbic Acid and Indolic-3-Butyric Acid on Root Induction and Development in Cuttings of Bougainvillea spectabilis

Bougainvillea (Bougainvilleaspectabilis) is used for planting in the landscape because of their beautiful and colorful flowers. The easiest and cheapest technique to propagate this plant is by cuttings; however the cuttings of this plant are not easily rooted and require the special treatments, including the use of auxin. For this purpose, an experiment was performed in Completely Rand...

متن کامل

Induction of root Fe(lll) reductase activity and proton extrusion by iron deficiency is mediated by auxin-based systemic signalling in Malus xiaojinensis

Iron is a critical cofactor for a number of metalloenzymes involved in respiration and photosynthesis, but plants often suffer from iron deficiency due to limited supplies of soluble iron in the soil. Iron deficiency induces a series of adaptive responses in various plant species, but the mechanisms by which they are triggered remain largely unknown. Using pH imaging and hormone localization te...

متن کامل

The Role of signaling of hydrogen peroxide and 24-epibrassinosteroid on physiological traits of cumin (Cuminum cyminum L.) under drought stress

Two biochemical compounds of hydrogen peroxide and 24-epibrassinosteroid have significant biological effects on plant growth. In the present study, the effects of drought and its interaction with H2O2 and 24-epibrassinosteroid on the protein, sugars, essential oil percentage, photosynthetic pigments, phenols and flavonoids were investigated. For this purpose, a factorial experiment in a complet...

متن کامل

Bacillus thuringiensis - Mediated Priming Induces Jasmonate/Ethylene and Salicylic Acid-Dependent Defense Pathways Genes in Tomato Plants

Bacillus thuringiensis Berliner as a biological control agent can play a crucial role in the integrated management of a wide range of plant pests and diseases. B. thuringiensis is expected to elicit plant defensive response through plant recognition of microbe-associated molecular patterns (MAMPs), however, there is little information on the molecular base of induced systemic ...

متن کامل

Beneficial effect of titanium on plant growth, photosynthesis and nutrient trait of tomato cv. Foria

ABSTRACT- Titanium is a beneficial element for plant since its promotive effect on plant metabolism has been well documented. However, the physiological role of this trace element in tomato is not clear. This experiment was conducted as a complete randomized design to study two concentrations of titanium (1 and 2 mg/L Ti) and 0 as control on physiological and nutrient properties of tomato cv. F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 172 2  شماره 

صفحات  -

تاریخ انتشار 2016